Arboricultural Impact Assessment and Method Statement

Land at:
Iden Park
Staple Hurst

21st July 2016
This report has been prepared by
PJC Consultancy Ltd
on behalf of
Brian Mathews

<table>
<thead>
<tr>
<th>Prepared by</th>
<th>Owen Allpress BSc(Hons) M.Arbor.A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Owen has received both an FdSc and a BSc (Hons) in Arboriculture and is a professional member of the Arboricultural Association. Working in the industry for nearly 10 years, Owen has extensive experience in arboricultural contracting, consultancy and business management.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Checked by</th>
<th>Peter Davies FdSc Arboriculture M.Arbor.A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peter has a Foundation Degree in Arboriculture and is a professional member of the Arboricultural Association. He has ten years experience in the arboricultural industry, originally working as a groundsman and feller, and progressing into consultancy. He is a Lantra accredited professional tree inspector.</td>
</tr>
</tbody>
</table>
CONTENTS

1 Executive summary
2 Introduction
3 Initial tree survey
4 Arboricultural impact assessment
5 Arboricultural method statement

Appendices:
1. Tree Constraints Plan and Tree Protection Plan
2. Tree Survey Schedule
3. Cascade chart for tree quality assessment
4. Root protection area formulas
5. Tree protection fencing specification
6. Example protective fencing signs
1 EXECUTIVE SUMMARY

1.1 Proposal: A proposal has been outlined to develop a portion of the land for housing.

1.2 Site location: The site is situated to the southeast of Staplehurst along the A229. The surrounding land use comprises residential land to the north and northwest and arable land to the southeast. The site itself adjoins Lake House, which maintains a significant position within the landscape being part of an historic estate. The location of the site within its environs is shown in figure 1.

Figure 1: Location of Site and Environs

1.3 Tree removals: T8 and T14 will be removed to facilitate the proposed development. Mitigation in the form of planting suitably sized and specie tree stock at location suggested within this report. T8 is unable to be retained as part of the proposal. It is thought that due to it’s age, condition and vigour of the level of activity required to facilitate the proposal beneath the tree would present too greater impact. The tree stock across the site is predominantly over mature and mitigating the loss of T8 through the planting and protection of suitably sized tree stock, post development, will also improve the age diversity across the site, allowing for a future succession plan with regard to tree cover.

1.4 Access facilitation pruning: Pruning will be required to crown lift T7 across the area identified on the Tree Protection plan as Temporary ground protection. This will be required to facilitate access to construct the dwelling adjacent and present a more usable space beneath the tree in the long term. Although final heights are to be confirmed crown lifting to suitable secondary growth where appropriate to a estimated height of 4-5 m will likely be appropriate for this purpose.

1.5 Works within root protection areas: A new drive will pass the Root Protection Area of T7 and the new access will pass through the woodland belt at the front of the site. The entirety of the new access track and the proposed driveway adjacent T7 will be constructed of CellWeb or similar Cellular confinement technology. These engineered solutions will be used to minimise the impact on trees, allowing their retention and continued contribution to the site.
2 INTRODUCTION

2.1 **Instruction:** PJC Consultancy has been instructed by Brian Mathews to provide an arboricultural impact assessment for proposed construction works at Iden Park. The proposal is to develop a portion of the site for housing.

2.2 **Brief:** PJC Consultancy has been commissioned to carry out a tree survey and to compile an arboricultural impact assessment in accordance with guidelines set out in BS5837: 2012 ‘Trees in relation to design, demolition and construction – Recommendations’.

2.3 **Scope of this report:** This report is concerned with all significant trees located within the site boundary and those located around the curtilage of the site with the potential to impact or be impacted by the proposed construction works (in relation to root or crown protection or foundation design).

2.4 **Contents of report:** This report has been produced to provide a schedule trees to be removed or pruned for the proposed development, as well as to evaluate the implications of the development on retained trees. The report includes the following:

- A schedule of existing trees at the site including an assessment of their condition and value based on the existing land use.
- A schedule of trees to be retained/removed.
- A schedule of access facilitation pruning required for development.
- An assessment of the impact construction works will have on retained trees and mitigation measures to be implemented.
- An assessment of post development pressures on trees.
- Recommendations for post development arboricultural management.
- Tree Constraints Plan and Tree Protection Plan.

2.5 **Documents and information provided:** The following documents were provided by the client to produce this report:

- Topographical survey
- Proposal drawing rev 2
3 INITIAL TREE SURVEY SUMMARY

3.1 Site visit: A site visit was carried out on 4th July 2016. The weather conditions at the time were dry and bright. The visibility was suitable to carry out a comprehensive tree survey. The initial survey assessed the trees in the context of the existing land use, not in consideration of development proposals.

3.2 Tree information: The following measurements and information were recorded in the Tree Survey Schedule for each tree or tree group:

- Tree reference number. (T=tree, G=group, H=hedgerow, W=woodland block).
- Species (common and scientific name).
- Overall tree height (m).
- Stem diameter (mm) per stem or average diameter for trees with 6 or more stems.
- Branch spread (m) measured to the four cardinal points.
- Existing height (m) above ground level of lowest significant branch and direction of growth.
- Existing height (m) above ground level of canopy.
- Age class (young, semi mature, early mature, mature, over mature or veteran).
- Physiological condition (good, fair, poor).
- Structural condition (good, fair, poor).
- Comments (general description of tree including any notable features).
- Preliminary management recommendations.
- Tree categorisation (see below).
- Root protection area (m²).
- Root protection radius (m).

3.3 Tree categorisation: Each tree or tree group has been awarded either category A, B, C or U and a sub category of either 1, 2 or 3 or a combination of the sub categories.

3.4 Tree categorisation summary:

- A – Trees of good condition or high value, with a predicted life span in excess of forty years.
- B – Trees of moderate condition or value, with a predicted life span in excess of twenty years.
- C – Trees of poor condition or low value, with a predicted life span in excess of ten years.
- U – Trees of such impaired condition that they cannot realistically be retained as living trees in the context of the current land use for more than ten years.

3.5 Tree sub categorisation summary:

- 1 – Trees have mainly arboricultural value, e.g. trees of good condition, form and vitality or rare tree species.
- 2 – Trees have mainly landscape value, e.g. trees of landscape prominence, that serve to screen unsightly views or that are required for privacy.
- 3 – Trees with mainly cultural value including conservation, e.g. commemorative trees, trees of historical significance, trees of ecological significance or veteran trees.
3.6 Each tree can only be categorised as A, B or C but may comply with more than one sub category. A cascade chart further explaining how tree categorisation is decided is included in Appendix 3.

3.7 **Root protection areas:** Each tree’s stem diameter was recorded, and applied to the formula found in Appendix 4 to establish its root protection area. A root protection area represents a calculation of the minimum area of root growth required to support the tree, not the total rooting area.

3.8 The root protection areas are plotted onto the Tree Constraints Plan in Appendix 1, and recorded in the Tree Survey Schedule in Appendix 2. These are represented as a circle on the plan and are colour coded depending on the category the tree has been awarded.

3.9 The disturbance of a tree’s root system can result in crown dieback and even death of the tree. Roots are used to support the tree structurally and act as transport for water and nutrients. Direct damage such as root severance can lead to ill health, as can compaction of the soil by construction traffic, heavy plant and storage of materials. Changing the nature of the surface above the growing medium, (i.e. from porous to non-porous), can alter the resources available to the tree, which in turn can lead to its decline.

3.10 The root protection areas must be left free from excavation and disturbance, and protected from compaction or contamination during any proposed works. The majority of root growth is usually found within the top meter of soil. As such, even shallow disturbance within root protection areas can potentially have a significant impact on the trees.

3.11 **Limitations of site visit:** The survey methodology was restricted to a visual tree assessment from ground level. No tree climbing or ground investigation was carried out for this report. Where existing site constraints are present such as ivy covered trees, a very dense under-storey, or where trees are located on third party land to which access was not granted, tree dimensions were estimated by eye as accurately as possible.

3.12 **Site layout:** The site consists of an open area of field with over-mature trees positioned throughout. A stream divides the field approximately east to west. A regenerated woodland belt consisting of regen species such as ash birch and elm with sporadic mature trees exists at the road frontage.

3.13 **Statutory tree protection:** Maidstone District Council Planning Department’s online mapping service was accessed on 21st July 2016 to establish restrictions to tree works at the site. No Tree Preservation Order (TPO) protects the trees on this site on the date of this report and the site is not located within a Conservation Area. However, any persons proposing to undertake tree works must check the status of these trees with the local authority, and gain necessary consent before works are undertaken.
3.14 Financial penalties and/or criminal proceedings can result if tree works are carried out on a protected tree without consent. The entirety of the tree is protected, both above and below ground.

3.15 Tree categorisation summary: A total of thirteen trees including two tree groups were surveyed and included in the Tree Survey Schedule. Five trees were categorised as A, nine categorised as B and three categorised as C.
4 ARBORICULTURAL IMPACT ASSESSMENT

4.1 Tree removals: Trees to be removed for the proposed development are shown with dashed outlines on the Tree Protection Plan in Appendix 1. These include T8 and T14.

4.2 The loss of T8 will be mitigated by planting during the soft landscaping phase of development. The tree stock across the site is predominantly over mature and mitigating the loss of T8 through the planting and protection of suitably sized tree stock post development will also improve the age diversity across the site, allowing for a future succession plan with regard to tree cover.

4.3 Access facilitation pruning: Pruning will be required to crown lift T7 across the area identified on the Tree Protection plan as Temporary ground protection. This will be required to facilitate access to construct the dwelling adjacent and present a more usable space beneath the tree in the long term. Although final heights are to be confirmed crown lifting to suitable secondary growth where appropriate to a estimated height of 4-5 m will likely be appropriate for this purpose.

4.4 All access pruning should be carried out in accordance with BS3998: 2010 ‘Tree works – recommendations’. Any additional

4.5 Works within root protection areas: A new Drive and turning area adjacent to T7 will encroach the root protection area of 5.3%. This is below the maximum 20% recommended in BS5837: 2012. The tree currently appears of good vitality and should not be adversely affected by the additional surface provided it is constructed to a no dig-permeable specification with provision made to avoid localised compaction post development. The methodology for surfacing within root protection areas is outlined in the arboricultural method statement.

4.6 All proposed buildings will be located outside the root protection areas of retained trees. Provided the exclusion zones and methodologies described in the arboricultural method statement and Tree Protection Plan are followed, trees proposed for retention should not be adversely affected by the construction works.

4.7 Privacy and screening: The trees located at the frontage as part of W12 will provide screening between the development and the A229. Further planting is recommended within the site to improve the age class diversity of tree stock on site.

4.8 Services: Details of the routing of services for the proposed development are not currently available. Once details of the routing of new services become available, prior to commencement, these shall be reviewed by the project arboriculturalist. The arboriculturalist shall then confirm to the local authority arboricultural officer either that no works will be carried out within root protection areas, or provide details of the methodology required to ensure the works are carried out in accordance with NJUG10 ‘Guidelines for the planning, installation and maintenance of utilities in proximity to trees’ and BS5837: 2012.
4.9 **Post development tree pressures**: Due to the positioning of the properties and the associated gardens. Leaf drop will be a factor across the gardens adjacent to T6 and T7 however this being at a single point throughout the year and not thought to be excessive given the additional area outside of the immediate crown of the trees is significantly larger than the area they occupy.

4.10 **Conclusions**: Based on the above assessment, trees recommended for retention in this report can be protected during the proposed construction works and successfully integrated into the site post development.

4.11 Provided the approaches and methodologies and exclusion zones described in the arboricultural method statement are followed, trees proposed for retention in this report should not be adversely affected by the proposed construction works.
5 ARBORICULTURAL METHOD STATEMENT

5.1 **General requirements:** The arboricultural method statement and Tree Protection Plan shall remain on site for the duration of demolition, construction and landscaping works and be available to site operatives at all times. All operatives at the site shall be briefed about tree related factors as part of their site induction.

5.2 Any variation from the methodology described in this method statement shall be discussed with the supervising arboriculturalist and agreed with the local authority arboricultural officer.

5.3 **Initial tree works:** The tree works listed in the management column of the Tree Survey Schedule shall be carried out as the first stage of development. Tree stumps and vegetation located within the root protection areas of retained trees shall be cleared with controlled hand tools (e.g. stump grinder/brush cutter). Plant machinery shall not be used to scrape vegetation within root protection areas or access the site until the tree protection barriers have been installed.

5.4 If bonfires are lit to dispose of arising’s from the vegetation or tree clearance works, an assessment of wind direction and strength shall be made to ensure flames cannot extend within 5m of any part of a retained tree, including its root protection area.

5.5 Trees should be checked for protected species before works are undertaken. It is against the law to disturb bats or their roosts under the Conservation of Habitat and Species Regulations. Nesting birds are protected by the Wildlife and Countryside Act. If protected species are discovered, Natural England should be contacted for advice.

5.6 The tree works contractors should carry out all tree works to BS3998: 2010 ‘Tree works – recommendations’ as modified by research that is more recent. They should also carry relevant, adequate and up to date insurance.

5.7 It is recommended that an Arboricultural Association approved contractor carry out all tree works. Approved contractors are expected to work to industry best standards. The Arboricultural Association website contains contact details and information on engaging a suitable contractor.

5.8 **Tree protection barriers:** The root protection areas of retained trees must be left free from disturbance, and protected from contamination or compaction during the proposed works. Protection shall comprise a combination of tree protection fencing and temporary ground protection.

5.9 The tree protection fencing shall be installed in the locations shown on the Tree Protection Plan. The specification for fencing is included in Appendix 5. Signs shall be affixed to the fencing as shown in Appendix 6 to explain its purpose.
5.10 To create a usable workspace around the new building adjacent to T7, temporary ground protection shall be installed in the locations shown on the Tree Protection Plan. To be fit for purpose, the ground protection needs to prevent compaction or rutting of the ground beneath. Depending on the size of the construction traffic, completed road and driveway surfaces can in some cases also provide ground protection (e.g. within root protection area of T7). The final specification for ground protection should be agreed at the pre-commencement meeting with the project arboriculturalist.

5.11 Where ground protection is required for pedestrians or lightweight plant up to 2 tons gross weight, example specifications include:

- A single thickness of scaffold boards on a compressible layer of wood chip or sharp sand (100mm for pedestrians or 150mm for small plant), spread across a geotextile membrane.
- A single thickness of scaffold boards on a driven scaffold frame.

5.12 Where ground protection is required for vehicles, machinery or heavy loads over 2 tons gross weight, example specifications include:

- A cellular confinement system (provided by CellWeb or similar product).
- A proprietary ground protection system (provided by Eve Trakway or similar product).
- Pre-cast reinforced concrete slabs.
- A bespoke ground protection system made to an engineers specification with arboricultural input.

5.13 Tree protection barriers shall be installed following the initial tree works, prior to construction traffic entering the site. They shall remain in place for the duration of construction and hard landscaping works unless otherwise stated in this report.

5.14 The areas protected by fencing or ground protection shall be referred to as the construction exclusion zones. The following actions shall be prohibited within the construction exclusion zones:

- Vehicular access unless on suitable ground protection.
- Regular pedestrian access unless on suitable ground protection.
- Storage of construction materials.
- Storage or handling of harmful chemicals.
- Any change in ground level unless otherwise stated in this report or under supervision of project arboriculturalist.
- Construction activities including hard surfacing unless otherwise stated in this report.

5.15 **Storage and handling of harmful chemicals:** Provision needs to be made to avoid the storage and handling of harmful chemicals in proximity to trees. Harmful chemicals include fuels, oils, builder’s sand (which has a high salt content) and cement. Cement mixing shall only occur where there is no potential for cement washings to leech into a root protection area. Provision shall also be made to prevent fuelling or the handling of cement from occurring in areas proposed for further planting.
5.16 **Contractor facilities:** A suitable location for site cabins, contractor parking and site facilities for operatives shall be agreed with the project arboriculturalist during a pre-commencement meeting. These facilities should be located outside the root protection areas of retained trees (unless on retained tarmac surfaces). Provision must also be taken to prevent exhaust fumes or hot air from generators or kitchen facilities from damaging the canopies of retained trees.

5.17 **New permanent surfacing within root protection areas:** Where new permanent surfacing is installed within root protection areas, this shall occur above ground level. The surface vegetation including tree stumps may be removed using controlled hand tools. Plant machinery must not be used to scrape the surface vegetation.

5.18 A minimum buffer of 500mm shall be left between the buttresses of retained trees and the edge of the new surface to minimise post development damage from buttress roots.

5.19 The new surface shall be constructed on a cellular confinement system (provided by CellWeb or similar product) filled with reduced fines angular stone. This is to prevent localised compaction of the rooting medium post development. Porous geotextile membranes shall be used both above and below the cellular confinement system to prevent mixing of materials with the binding layer or the soil.

5.20 The type and depth of the cellular confinement system shall be selected by a structural engineer and will depend on soil conditions and the maximum size of vehicle for which the parking bay will be used.

5.21 The new surface needs to be permeable to air and water. This is to allow roots to respire without there being a build up of carbon dioxide, and to ensure the roots continue to receive the moisture and oxygen they require to function.

5.22 Traditional kerbing requires excavation to install and will therefore not be acceptable within the root protection areas of retained trees. As an alternative, haunched kerbing, treated timber edging, aluminium L-shaped edging, galvanised metal edging or no fixed edging shall be used.

5.23 The finished level of the no-dig surface will be higher than the surrounding unsurfaced ground. To mitigate this, clean-screened topsoil may be banked around the edge of the surface. It is recommended that no less than a gradient of 1:3 be used as increasing the ground level within a root protection area can disrupt root function. It is also necessary to avoid banking soil around the buttresses or buttress roots of retained trees.

5.24 If access is required onto the cellular confinement system before the final top surface is installed, a temporary surface (plywood boards or similar) shall be used to prevent soil and other building debris blocking the airspaces in the cellular confinement system, therefore reducing the final porosity of the completed surface.
5.25 Installation of the new surfaces within root protection areas will require access into the construction exclusion zones defined by the tree protection fencing and ground protection. During these works, the standard restrictions to works within the construction exclusion zone will apply. Scaffold board footpaths shall be used to transport materials across the root protection areas.

5.26 **Services:** When details of the routing of services become available, prior to commencement of construction works, they shall be reviewed by the project arboriculturalist. The arboriculturalist shall then confirm to the local authority arboricultural officer either that no works will be carried out within root protection areas, or provide details of the methodology required to ensure the works are carried out in accordance with NJUG10 ‘Guidelines for the planning, installation and maintenance of utilities in proximity to trees’ and BS5837: 2012.

5.27 **Soft landscaping within root protection areas:** New soft landscaping within the root protection areas of retained trees shall occur as the final phase of development. The final specification for soft landscaping is to be confirmed but may include turfing and tree/shrub planting within root protection areas.

5.28 Where new turf is to be laid within the root protection areas of retained trees, topsoil will likely need to be imported. The existing soil may be lightly tilled by hand but use of rotavators will be prohibited. A maximum increase of 100mm of topsoil may be introduced to avoid suffocating root growth. Care must be taken to prevent soil be piled against tree buttresses or buttress roots. When soil or other materials are transported across a root protection area, scaffold board pathways must be used to prevent compaction of the rooting medium. It should be noted that even light pedestrian use could compact the soil, particularly in wet conditions.

5.29 All planting pits within root protection areas shall be individually hand excavated (no trench planting). Care must be taken to avoid severing or damaging roots with a diameter greater than 25mm.

5.30 **Arboricultural supervision:** Arboricultural supervision will be required for the following stages of development:

- A pre-commencement meeting with the contractors to clarify the tree protection methodology, to discuss the phasing of works, to mark out the locations for the tree protection barriers and to agree locations for contractor facilities. The local authority arboricultural officer shall be given reasonable notice of the pre-commencement meeting so they may attend if it is deemed necessary.
- To sign off that the tree protection barriers have been installed in the correct locations and to the agreed specification.
- To review the routing of new services and to provide guidance on best practice for installation where necessary.
- To supervise excavation into the root protection areas where relevant.
- To ensure the prescribed methodology is followed for construction works within the root protection areas of trees.
5.31 In addition to the above, a system and programme of onsite monitoring by the appointed arboricultural consultant should be agreed with the Local Authority Arboricultural Officer, if it is deemed necessary. The form and frequency of site monitoring shall be agreed at the pre-commencement meeting.

5.32 If significant root growth is disturbed during construction activities that are not within the scope of this report, the work shall cease until the project arboriculturalist has been consulted. Roots greater than 25mm in diameter or dense/matted fibrous roots shall be considered significant root growth. It should be remembered that whilst root protection areas are part of industry best practice, tree root growth is influenced by a number of factors and may not conform to expected ideals.

5.33 If at anytime during the construction process, damage is inadvertently caused to a tree, the project arboriculturalist shall be notified to assess the likely implications and to prescribe potential remedial measures to be implemented. Damage can be in the form of chemical or fuel spillage, mechanical damage to either the above ground parts of the tree or the roots, fire or any other unforeseen circumstance.

5.34 The supervising arboriculturalist shall be appointed by the contractor. It will be necessary for the arboriculturalist to report to the local planning authority on the outcome of the site visits as well as any unforeseen tree related issues.
Contact details

PJC Consultancy Ltd
Chapter House
Priesthawes Farm
Hailsham Road
Polegate
East Sussex
BN26 6QU

Tel: 01323 400311

E-mail: owen@pjconsultancy.com

Author: Owen Allpress

Date: 21st July 2016
APPENDIX 1

Tree Constraints Plan

Tree Retention Plan

Tree Protection Plan
APPENDIX 2
Tree Survey Schedule
Tree Survey Schedule

Client: Brian Mathews
Site: Land at Iden Park, Staplehurst
Survey date: 4th July 2016
Surveyor: Owen Allpress

<table>
<thead>
<tr>
<th>Tree ref. no.</th>
<th>Species</th>
<th>Height (m)</th>
<th>Stem diameter (mm)</th>
<th>Branch spread (m)</th>
<th>Crown clearance (m)</th>
<th>Age class</th>
<th>Physiologic al condition</th>
<th>Structural condition</th>
<th>Management recommendations</th>
<th>Category grading</th>
<th>Root Protection Area (m²)</th>
<th>Root Protection Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Pedunculate Oak, Quercus Robur</td>
<td>14</td>
<td>1510</td>
<td>N: 6</td>
<td>1</td>
<td>Mature</td>
<td>Good</td>
<td>Fair</td>
<td>Historic branch loss, minor deadwood.</td>
<td>A1</td>
<td>707.8</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Capped</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>Small leaved lime, Tilia cordata</td>
<td>10</td>
<td>900 est</td>
<td>N: 4</td>
<td>0</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Detailed basal inspection obscured by dense basal growth.</td>
<td>B2</td>
<td>366.9</td>
<td>10.8</td>
</tr>
<tr>
<td>G3</td>
<td>Pedunculate Oak, Quercus Robur</td>
<td>13</td>
<td>1666</td>
<td>N: 10</td>
<td>1</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Two oak closely, but open grown forming single crown. Minor dead wood.</td>
<td>A2</td>
<td>707.8</td>
<td>15.0</td>
</tr>
<tr>
<td>T4</td>
<td>Copper Beech, Fagus sylvatica 'purpurea'</td>
<td>10</td>
<td>800</td>
<td>N: 5</td>
<td>2</td>
<td>Mature</td>
<td>Fair</td>
<td>Good</td>
<td>Sparse canopy for time of year. Decay cavities with nesting bird & bat potential.</td>
<td>B1</td>
<td>289.9</td>
<td>9.6</td>
</tr>
<tr>
<td>T5</td>
<td>Copper Beech, Fagus sylvatica 'purpurea'</td>
<td>8</td>
<td>790</td>
<td>N: 6</td>
<td>0</td>
<td>Mature</td>
<td>Poor</td>
<td>Poor</td>
<td>Extensive internal decay evident in numerous branch wounds. Limb loss deadwood and crown dieback. evidence of Honey fungus.</td>
<td>C1</td>
<td>282.7</td>
<td>9.5</td>
</tr>
<tr>
<td>T6</td>
<td>Pedunculate Oak, Quercus Robur</td>
<td>13</td>
<td>1530</td>
<td>N: 6</td>
<td>2</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Minor deadwood under a 25mm diameter. lesion and increment growth on north side buttress root.</td>
<td>A2</td>
<td>707.8</td>
<td>15.0</td>
</tr>
</tbody>
</table>

T: Individual tree or shrub
G: Group of 2 or more trees
H: Hedgerow
W: Woodland block
<table>
<thead>
<tr>
<th>Tree ref. no.</th>
<th>Species</th>
<th>Height (m)</th>
<th>Stem diameter (mm)</th>
<th>Branch spread (m)</th>
<th>Crown clearance (m)</th>
<th>Age class</th>
<th>Physiological condition</th>
<th>Structural condition</th>
<th>Management recommendations</th>
<th>Category grading</th>
<th>Root Protection Area (m²)</th>
<th>Root Protection Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T7</td>
<td>Pedunculate Oak, (Quercus Robur)</td>
<td>10</td>
<td>1070</td>
<td>N: 5 E: 3 S: 5 W: 5</td>
<td>1</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Minor deadwood and historic limb loss.</td>
<td>A2</td>
<td>518.7</td>
<td>12.8</td>
</tr>
<tr>
<td>T8</td>
<td>Pedunculate Oak, (Quercus Robur)</td>
<td>9</td>
<td>1004</td>
<td>N: 4 E: 4 S: 6 W: 4</td>
<td>1</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Dual stem tree adjacent ditch. Remove to facilitate proposal.</td>
<td>B1</td>
<td>456.6</td>
<td>12.0</td>
</tr>
<tr>
<td>T9</td>
<td>Indian horse chestnut, (Aesculus indica)</td>
<td>5</td>
<td>300</td>
<td>N: 3 E: 3 S: 3 W: 3</td>
<td>0</td>
<td>Mature</td>
<td>Good</td>
<td>Fair</td>
<td>Helical stem fracture and bark damage on stem</td>
<td>B1</td>
<td>40.8</td>
<td>3.6</td>
</tr>
<tr>
<td>T10</td>
<td>Horse chestnut, (Aesculus hippocastanum)</td>
<td>7</td>
<td>300</td>
<td>N: 3 E: 3 S: 3 W: 3</td>
<td>0</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Bark cracks and damage. Leaf miner active at time of survey with moderate.</td>
<td>B1</td>
<td>40.8</td>
<td>3.6</td>
</tr>
<tr>
<td>T11</td>
<td>Sweet Chestnut, (Castinea sativa)</td>
<td>6</td>
<td>580</td>
<td>N: 4 E: 6 S: 4 W: 2</td>
<td>1</td>
<td>Mature</td>
<td>Good</td>
<td>Fair</td>
<td>Partial root plate failure, dead bark.</td>
<td>C1</td>
<td>152.4</td>
<td>7.0</td>
</tr>
<tr>
<td>W12</td>
<td>Ash & Maple</td>
<td>>12</td>
<td>>430</td>
<td>N/A</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Mixed native woodland predominantly regen around some larger mature trees highlighted separately. Some dead and winthrown trees evidence of DED and Inonotus in ash.</td>
<td>B3</td>
<td>85.1</td>
<td>5.2</td>
<td></td>
</tr>
</tbody>
</table>
Tree Survey Schedule

Client: Brian Mathews
Site: Land at Iden Park, Staplehurst
Survey date: 4th July 2016
Surveyor: Owen Allpress

<table>
<thead>
<tr>
<th>Tree ref. no.</th>
<th>Species</th>
<th>Height (m)</th>
<th>Stem diameter (mm)</th>
<th>Branch spread (m)</th>
<th>Crown clearance (m)</th>
<th>Age class</th>
<th>Physiologic al condition</th>
<th>Structural condition</th>
<th>Management recommendations</th>
<th>Category grading</th>
<th>Root Protection Area (m²)</th>
<th>Root Protection Radius (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T14</td>
<td>Pedunculate Oak, (Quercus Robur)</td>
<td>14</td>
<td>530</td>
<td>N: 4</td>
<td>E: 4</td>
<td>S: 4</td>
<td>W: 4</td>
<td>9</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Slender form through competition. Remove to facilitate proposal.</td>
</tr>
<tr>
<td>T15</td>
<td>Pedunculate Oak, (Quercus Robur)</td>
<td>14</td>
<td>460</td>
<td>N: 4</td>
<td>E: 4</td>
<td>S: 4</td>
<td>W: 4</td>
<td>8</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Slender form through competition</td>
</tr>
<tr>
<td>T16</td>
<td>Pedunculate Oak, (Quercus Robur)</td>
<td>13</td>
<td>1130</td>
<td>N: 7</td>
<td>E: 7</td>
<td>S: 7</td>
<td>W: 7</td>
<td>1</td>
<td>Mature</td>
<td>Good</td>
<td>Good</td>
<td>Bark damage to buttress roots on north and southern aspects of stem.</td>
</tr>
</tbody>
</table>
APPENDIX 3
Cascade Chart for Tree Quality Assessment
Cascade chart for tree quality assessment

<table>
<thead>
<tr>
<th>Category and definition</th>
<th>Criteria (including subcategories where appropriate)</th>
<th>Identification on plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category U</td>
<td>Those in such a condition that they cannot realistically be retained as living trees in the context of their current land use for longer than 10 years</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>• Trees that have a serious, irremediable, structural defect, such that their early loss is expected due to collapse, including those that will become unviable after the removal of other category U trees (e.g. where, for whatever reason, the loss of companion shelter cannot be mitigated by pruning)</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>• Trees that are dead or are showing signs of significant, immediate, and irreversible overall decline</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>• Trees infected with pathogens of significance to the health and/or safety of other trees nearby, or very low quality trees suppressing adjacent trees of better quality</td>
<td>Red</td>
</tr>
<tr>
<td></td>
<td>Note: Category U trees can have existing or potential conservation value which it might be desirable to preserve</td>
<td>Red</td>
</tr>
</tbody>
</table>

Trees unsuitable for retention

Category A	Trees of high quality with an estimated remaining life expectancy of at least 40 years	**Green**
	Trees that are particularly good examples of their species, especially if rare or unusual; or those that are essential components of groups or formal or semi—formal arboricultural features (e.g. the dominant and/or principal trees within an avenue)	**Green**
	Trees, groups or woodlands of particular visual importance as arboricultural and/or landscape features	**Green**
	Trees, groups or woodlands of significant conservation, historical, commemorative or other value (e.g. veteran trees or woodland—pasture)	**Green**

Trees to be considered for retention

Category B	Trees of moderate quality with an estimated remaining life expectancy of at least 20 years	**Blue**
	Trees that might be included in category A, but are downgraded because of impaired condition (e.g. presence of significant though remedial defects, including unsympathetic past management and storm damage), such that they are unlikely to be suitable for retention for beyond 40 years; or trees lacking the special quality necessary to merit the category A designation	**Blue**
	Trees present in numbers, usually growing as groups or woodlands, such that they attract a higher value collective rating than they might as individuals; or trees occurring as collectives but situated so as to make little visual contribution to the wider locality	**Blue**
	Trees with material conservation or other cultural value	**Blue**

Category C	Trees of low quality with an estimated remaining life expectancy of at least 10 years, or young trees with a stem diameter below 150 mm	**Grey**
	Unremarkable trees of very limited merit or such impaired condition that they do not qualify in higher categories	**Grey**
	Trees present in groups or woodlands, but without this conferring on them significantly greater collective landscape value; and/or trees offering low or only temporary/transient landscape benefits	**Grey**
	Trees with no material conservation or other cultural value	**Grey**
APPENDIX 4
Root Protection Area Formulas

CALCULATING THE RPA

For single stemmed trees

\[RPA(m^2) = \frac{(\text{stem diameter (mm) @ 1.5 m x 12})^2 \times 3.142}{1000} \]

For trees with two to five stems, a combined stem diameter is calculated as follows:

\[\sqrt{\text{(stem diameter 1)}^2 + \text{(stem diameter 2)}^2 \ldots + \text{(stem diameter 5)}^2} \]

For trees with more than five stems, the combine stem diameter is calculated as follows:

\[\sqrt{\text{(mean stem diameter)}^2 \times \text{number of stems}} \]
APPENDIX 5
Tree Protection Fencing Specification

Key
1. Standard scaffold poles
2. Heavy gauge 2 m tall galvanized tube and welded mesh infill panels
3. Panels secured to uprights and cross-members with wire ties
4. Ground level
5. Uprights driven into the ground until secure (minimum depth 0.6 m)
6. Standard scaffold clamps

a) Stabilizer strut with base plate secured with ground pins
b) Stabilizer strut mounted on block tray
APPENDIX 6
Example Protective Fencing Signs

PROTECTIVE FENCING. THIS FENCING MUST BE MAINTAINED IN ACCORDANCE WITH THE APPROVED PLANS AND DRAWINGS FOR THIS DEVELOPMENT.

TREE PROTECTION AREA KEEP OUT!
(TOWN & COUNTRY PLANNING ACT 1990)
TREES ENCLOSED BY THIS FENCE ARE PROTECTED BY PLANNING CONDITIONS AND/OR ARE THE SUBJECTS OF A TREE PRESERVATION ORDER. CONTRAVENTION OF A TREE PRESERVATION ORDER MAY LEAD TO CRIMINAL PROSECUTION
ANY INCURSION INTO THE PROTECTED AREA MUST BE WITH THE WRITTEN PERMISSION OF THE LOCAL PLANNING AUTHORITY